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DERIVATION OF THE BRESENHAM’S LINE ALGORITHM 

Assumptions: 
●  input: line endpoints at (X1,Y1) and (X2, Y2) 
●  X1 < X2 
●  line slope ≤ 45o, i.e. 0 < m ≤ 1 
●  x coordinate is incremented in steps of 1, y coordinate is computed 
●  generic line equation: y = mx + b 
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Derivation 
Assume that we already have a location of pixel ( xi, yi) and have plotted it. The question is, 
what is the location of the next pixel. 
 
Geometric location of the line at x-coordinate xi+1 = xi + 1 is: 
 
 y = m(xi + 1 ) + b (1) 
where: 
 m = ∆y / ∆x (slope) (2) 
 b – intercept 
 ∆x = X2 – X1  (from the assumption above that X1 < X2 ) (3) 
 ∆y = Y2 – Y1  
 
Define: 
 d1 = y – yi = m(xi + 1 ) + b - yi  

 d2 = ( yi + 1 ) - y  = yi + 1 - m(xi + 1 ) - b 
 
Calculate: 
 d1 – d2 = m(xi + 1 ) + b - yi -  yi – 1 + m(xi + 1 ) + b 
                      = 2m(xi + 1 ) – 2yi + 2b – 1 (4) 
 
if d1 – d2 < 0 then yi+1 ← yi  (5) 
if d1 – d2 > 0 then yi+1 ← yi + 1 (6) 
 
We want integer calculations in the loop, but m is not an integer. Looking at definition of m 
(m = ∆y / ∆x) we see that if we multiply m by ∆x, we shall remove the denominator and 
hence the floating point number. 
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For this purpose, let us multiply the difference ( d1 - d2 ) by ∆x and call it pi: 
 
 pi = ∆x( d1 – d2) 
 
The sign of pi is the same as the sign of d1 – d2, because of the assumption (3). 
 
Expand pi: 
 
pi = ∆x( d1 – d2) 
    = ∆x[ 2m(xi + 1 ) – 2yi + 2b – 1 ] from (4) 
    = ∆x[ 2 ⋅ (∆y / ∆x ) ⋅ (xi + 1 ) – 2yi + 2b – 1 ] from (2) 
    = 2⋅∆y⋅ (xi + 1 ) – 2⋅∆x⋅yi + 2⋅∆x⋅b – ∆x result of multiplication by ∆x 
    = 2⋅∆y⋅xi + 2⋅∆y – 2⋅∆x⋅yi + 2⋅∆x⋅b – ∆x 
    = 2⋅∆y⋅xi– 2⋅∆x⋅yi + 2⋅∆y + 2⋅∆x⋅b – ∆x (7) 
 
Note that the underlined part is constant (it does not change during iteration), we call it c, i.e.  
 c = 2⋅∆y + 2⋅∆x⋅b – ∆x 
 
Hence we can write an expression for pi as: 
 
 pi    = 2⋅∆y⋅xi– 2⋅∆x⋅yi + c (8) 
 
Because the sign of pi is the same as the sign of d1 – d2, we could use it inside the loop to 
decide whether to select pixel at (xi + 1, yi ) or at (xi + 1, yi +1). Note that the loop will only 
include integer arithmetic. There are now 6 multiplications, two additions and one selection in 
each turn of the loop. 
 
However, we can do better than this, by defining pi recursively. 
 
 pi+1 = 2⋅∆y⋅xi+1– 2⋅∆x⋅yi+1 + c from (8) 
 pi+1 – pi = 2⋅∆y⋅xi+1– 2⋅∆x⋅yi+1 + c  
                       - (2⋅∆y⋅xi   – 2⋅∆x⋅yi    + c ) 
                       = 2∆y ⋅ (xi+1 – xi) – 2∆x ⋅ (yi+1 – yi) xi+1 – xi = 1 always 
 
 pi+1 – pi = 2∆y – 2∆x ⋅ (yi+1 – yi) 
 
 
Recursive definition for pi: 
 
 pi+1 = pi + 2∆y – 2∆x ⋅ (yi+1 – yi) 
 
If you now recall the way we construct the line pixel by pixel, you will realise that the 
underlined expression: yi+1 – yi can be either 0 ( when the next pixel is plotted at the same y- 
coordinate, i.e. d1 – d2 < 0 from (5)); or 1 ( when the next pixel is plotted at the next y- 
coordinate, i.e. d1 – d2 > 0 from (6)). Therefore the final recursive definition for pi will be 
based on choice, as follows (remember that the sign of pi is the same as the sign of d1 – d2): 
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if pi < 0,  pi+1 = pi + 2∆y because 2∆x ⋅ (yi+1 – yi) = 0 
if pi > 0,  pi+1 = pi + 2∆y – 2∆x because (yi+1 – yi) = 1 
 
At this stage the basic algorithm is defined. We only need to calculate the initial value for 
parameter po. 
 
pi = 2⋅∆y⋅xi– 2⋅∆x⋅yi + 2⋅∆y + 2⋅∆x⋅b – ∆x from (7) 
 
p0 = 2⋅∆y⋅x0– 2⋅∆x⋅y0 + 2⋅∆y + 2∆x⋅b – ∆x (9) 
 
For the initial point on the line: 
 y0 = mx0 + b 
therefore 
 b = y0 – (∆y/∆x) ⋅ x0 
 
Substituting the above for b in (9)we get: 
 
p0 = 2⋅∆y⋅x0– 2⋅∆x⋅y0 + 2⋅∆y + 2∆x⋅ [ y0 – (∆y/∆x) ⋅ x0 ] – ∆x 
    = 2⋅∆y⋅x0 – 2⋅∆x⋅y0 + 2⋅∆y + 2∆x⋅y0 – 2∆x⋅ (∆y/∆x) ⋅ x0 – ∆x    simplify 
    = 2⋅∆y⋅x0 – 2⋅∆x⋅y0 + 2⋅∆y + 2∆x⋅y0 – 2∆y⋅x0 – ∆x regroup 
    = 2⋅∆y⋅x0 – 2∆y⋅x0 – 2⋅∆x⋅y0 + 2∆x⋅y0 + 2⋅∆y – ∆x simplify 
    = 2⋅∆y – ∆x 
 
We can now write an outline of the complete algorithm. 

Algorithm 

1. Input line endpoints, (X1,Y1) and (X2, Y2) 
2. Calculate constants: 
 ∆x = X2 – X1 
 ∆y = Y2 – Y1 
 2∆y 
 2∆y – ∆x 
3. Assign value to the starting parameters: 
 k = 0 
 p0 = 2∆y – ∆x 
4. Plot the pixel at ((X1,Y1) 
5. For each integer x-coordinate, xk, along the line 
      if pk < 0 plot pixel at ( xk + 1, yk ) 
   pk+1  = pk + 2∆y     (note that 2∆y is a pre-computed constant) 
 
      else  plot pixel at ( xk + 1, yk + 1 ) 
   pk+1  = pk + 2∆y – 2∆x 
             (note that 2∆y – 2∆x is a pre-computed constant) 
 
      increment k 
 
 while x k < X2 


